• Skip to primary navigation
  • Skip to content

Multiscale Biosystems and Multifunctional Nanomaterials Lab

  • Home
  • The MBMN
  • Research
    • Organs-on-chips
      • Human Blood-Brain Barrier on Chip
      • Microfluidic Transcellular Monitor
      • Tumor Microenvironment on Chip
    • Nanomedicine
      • Computational Modeling of Nanomaterials
      • Engineered HDL-mimetic Nanoparticle
      • Lipid-Polymer Nanoparticle
      • Scalable Nanomanufacturing
  • People
    • Director
    • Lab Member
      • Research Scientist
      • Postdoctoral Fellow
      • Graduate Student
      • Undergraduate Student
      • Visiting Scholar
      • Visiting Intern
      • Visiting HS Intern
    • Collaborators
  • Publication
    • Journal Article
    • Book Chapter
    • Presentation
  • Outreach
  • News
  • Photo
  • Join Us
  • Contact Us

Organs-on-chips

 

Organs-on-chips that mimic the characteristics of human organs are enabling scientists to predict more accurately how effective therapeutic drug candidates would be in clinical studies without serious adverse effects and to address how multiple cells coordinate organizational decisions in response to complicated signaling cascades. We build valid artificial organ-on-a-chip systems by manipulating 3D extracellular environments in time and space, utilizing the expertise in microfabrication, miniaturization, robotics, and control systems engineering, and understanding the human body’s fundamental physiological responses to mechanochemical cues. This research will help examine the behavior and interaction of multifunctional nanomaterials with biologically relevant microenvironments for rapid clinical translation of nanomedicine, thereby bringing drugs to market more quickly and perhaps even eliminate the need for animal testing.

Engineering multiscale cells-on-chip systems for the improvement of our fundamental understanding of cellular/multicellular dynamics and the development of advanced therapeutics for or the treatment of Alzheimer’s disease, atherosclerosis, diabetes, medulloblastoma, and neuroinflammation.

 


Select Publications

Ahn SI, Sei YJ, Park HJ, Kim J, Ryu Y, Choi JM, Sung HJ, MacDonald TJ, Levey AI, and Kim Y, Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms (2020) Nature Communications 11: 175 (Link).

Lee Y, Ahn SI, and Kim Y, Organs-on-chips (2019), Encyclopedia of Biomedical Engineering 1:384–393. Elsevier (Link).

Ahn J, Ko J, Lee S, Yu J, Kim Y, and Jeon NL, Microfluidics in Nanoparticle Drug Delivery; From Synthesis to Pre-clinical Screening (2018) Advanced Drug Delivery Review 128: 29-53 (Link).

Sei YJ, Ahn J, Kim T, Shin EJ, Santiago-Lopez AJ, Jang SS, Jeon NL, Jang Y, and Kim Y, Detecting the functional complexities between high-density lipoprotein mimetics (2018) Biomaterials 170: 58-69 (Link). Selected as Leading Opinion.

Ahn J, Sei YJ, Jeon NL*, and Kim Y*, Probing the effect of bioinspired nanomaterials on angiogenic sprouting using a microengineered vascular system (2018) IEEE Transactions of Nanotechnology 17 (3): 393-397 (Link).

Sei YJ, Ahn SI, Virtue T, Kim T, and Kim Y, Detection of frequency-dependent endothelial response to oscillatory shear stress using a microfluidic transcellular monitor (2017) Scientific Reports 7: 10019 (Link).

Ahn J, Sei YJ, Jeon NL, and Kim Y, Tumor microenvironment on a chip: the progress and future perspective (2017) Bioengineering 4 (3): 64 (Link).

Lee Chung B*, Toth MJ*, Kamaly N, Sei YJ, Becraft J, Mulder W, Fayad Z, Farokhzad OC, Kim Y*, and Langer R*, Nanomedicines for endothelial disorders (2015) Nano Today 10 (6): 759-776 (Link).

Santiago-Lopez A, Hovell CM, Lee HJ, and Kim Y, Neuroregeneration: Disease modeling and therapeutic strategies for Alzheimer’s and Parkinson’s disease (2015) Frontiers in Biomedical Engineering: Convergence Technology 293-325 (Link).

Kim Y* and Langer R*, Microfluidics in nanomedicine (2015) Reviews in Cell Biology and Molecular Medicine 1:127–152 (Link). Invited Book Chapter.

Hovell CM*, Sei YJ*, and Kim Y, Microengineered vascular systems for drug development (2015) Journal of Laboratory Automation 20: 251-258 (link).

Sei YJ*, Justus K*, LeDuc PR*, and Kim Y*, Engineering living systems on chips: from cells to human on chips (2014) Microfluidics and Nanofluidics 16 (5): 907-920 (Link).

Hazar M, Kim Y, Song J, Davidson LA, LeDuc PR, and Messner WC, 3D bio-etching of a complex composite-like embryonic tissue (2015) Lab on a Chip 15: 3293-3299 (link).

Song J, Shawky J, Kim Y, Hazar M, LeDuc PR, Sitti M, and Davidson LA, Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues (2015) Biomaterials 58: 1-9 (link).

Kim Y*, Lobatto ME*, Kawahara T, Lee Chung B, Mieszawska AJ, Sanchez-Gaytan BL, Fay F, Senders M, Calcagno C, Becraft J, Saung MT, Gordon RE, Ma M, Farokhzad OC, Fayad ZA, Mulder WJM, and Langer R, Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis (2014) Proceedings of the National Academy of Sciences (PNAS) 111 (3): 1078-1083 (Link).

Kim Y, Hazar M, Vijayraghavan D, Song J, Jackson TR, Joshi SD, Messner WC, Davidson LA, and LeDuc PR, Mechanochemical actuators of embryonic epithelial contractility (2014) Proceedings of the National Academy of Sciences (PNAS) 111 (40): 14366-14371 (Link).

Kim Y, Messner WC, and LeDuc PR, Disruptive microfluidics: from life sciences to world health to energy (2012) Disruptive Science and Technology 1(1): 41-53 (Link).

Wilson ME, Kota N, Kim Y, Stolz DB, Wang Y, LeDuc PR, and Ozdoganlar OB, Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography (2011) Lab on a Chip 11(8): 1550-1555 (Link).

Kim Y*, Joshi SD*, Messner WC, LeDuc PR, and Davidson LA, Detection of dynamic spatiotemporal response to periodic chemical stimulation in a Xenopus embryonic tissue (2011) PLoS ONE 6(1): e14624 (Link).

Copyright © 2023 · Executive Pro on Genesis Framework · WordPress · Log in